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The ergodic properties of two stochastic models 2;~ and Y,~ are investigated. 
Each model is described by a field x(t) ,  t >! O, on the lattice I ~ = Z a, 
d < co. For  ~ ,  x(t)  evolves according to the equations 

dq~(t) = p~(t) dt 

dp~(t) = [ - grad q)l(q,(t)) - �89 ) 

+ ~ grad ~2(q~,(t) - q~(t))] dt + dws(t) for each s e F 
s' adjacent to s .] 

where x~(t) = (q~(t), p=(t)) ~ R ~ is the value taken by x(t)  at s e F. For Zzz, 
x(t ) satisfies 

[ - g r a d  (I)z(xs(t)) + ~ grad (I)2(x,,(t)- xs(t))]dt + dw,(t) dx,( t ) 
L s" adjacent to s J 

where x,(t)  e R for each s e 1 ~. Here the (w~(t): s ~ F} are independent, one- 
dimensional Wiener processes, gP2 is a bounded interaction between 
adjacent lattice sites, and the potentials (I)z and (I)2 satisfy appropriate 
regularity conditions. It is shown that for each model, x(t)  is a Markov 
process on an infinite-dimensional phase space X. The probability measures 
on X that satisfy the Dobrushin-Lanford-Ruelle (DLR) conditions are 
stationary for this process and have a mixing property. Moreover, for Z~ 
any stationary, time-reversal-invariant probability measure that has certain 
regularity properties must satisfy the D L R  conditions. 

KEY WORDS: Infinite stochastic system; Markov process; Dobrushin- 
Lanford-Ruelle condit ions ; mixing ; stationary states ; ergodic properties. 

1. I N T R O D U C T I O N  

I n  a p r e v i o u s  p a p e r  (z) we m a d e  a s tudy  o f  the  e r g o d i c  b e h a v i o r  o f  s o m e  finite-  

d i m e n s i o n a l  s tochas t i c  mode l s ,  a n d  o b t a i n e d  c o n d i t i o n s  u n d e r  wh ich  these  

1 This paper is based on a portion of the author's Ph.D. thesis. (2) 
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models satisfied a mixing property. Here we carry out a similar investigation 
for two stochastic models whose phase spaces are infinite-dimensional. In 
each case we seek to describe the stationary states and to find conditions 
under which the model is mixing with respect to any such state (according to 
the definition given below). 

The models Z~ and Z~ are described in Section 2. Z~ is a Hamiltonian 
model on an infinite lattice, incorporating bounded interactions between 
neighboring sites, and with the addition of mutually independent fluctuating 
forces which act at the individual lattice sites and are representative of thermal 
reservoirs. The equations of evolution of Z~ resemble a lattice version of 
those of the Ginzburg-Landau theory of superconductivity in their stochastic 
form, or their analog (3) describing a laser with a continuum of modes. 

The defining equations for Zz and E~ are shown in Section 3 to have 
unique solutions. In Section 4 the corresponding Markov process on the 
phase space X is described in each case, and the probability measures on X 
that satisfy the Dobrushin-Lanford-RueUe (DLR) conditions are shown to 
be stationary for this process. 

Let E be a stochastic system with an invariant measure m, and let the 
variables x(t) E X describing Z at time t >/ 0 have distribution mt on X. We 
say that Z is mixing with respect to m if limt_.~ m t =  m whenever m0 is 
absolutely continuous with respect to m. In Section 5 (Propositions 5.1 and 
5.2) we prove that, subject to some regularity assumptions, both Z~ and E~ 
are mixing with respect to any DLR measure. 

Finally, we prove in Section 6 (Proposition 6.1) that any stationary, 
time-reversal-invariant probability measure for Z~ that has certain regularity 
properties must satisfy the DLR conditions. Thus for this model we have a 
complete description of the stationary states, together with a mixing property. 

The following notation will be used. Z, R, and R" will denote the positive 
integers, the real line, and Euclidean n-dimensional space, respectively, and 
for n >/ 1 we shall write Ixl for the Euclidean norm of x s R ~. If (X, a, m) 
is a measure space, and 1 <~ p <~ oe, LP(X, m) will denote the LP-class func- 
tions on X with respect to m, and 1A the characteristic function of the set 
A e a. Finally, for n >1 1, Cgom(R ~) and C(2)(R ~) will denote, respectively, the 
twice continuously differentiable functions with compact support and the 
continuous, bounded functions having continuous, bounded first and second 
partial derivatives on R ". 

2. DESCRIPTION OF THE M O D E L S  

We shall now describe the models Z~ and Z~x with which we shall be 
concerned. The evolution of each model is given by a field x(t), t >>. O, on the 
la t t iceF = Z  a, 1 ~< d <  oo. 
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Model Z~: x(t) = (q(t) ,p( t))  is an R2-valued lattice field, taking the 
value xs(t) = (q~(t), p~(t)) at the site s s F. The phase space X is (R2) v and 
the formal field equations are 

dq,(t) = p ~ ( t ) d t  

dp,(t) = [F(q~(t)) - �89 
L 

+ ~,~~ g(qs,(t) - qs(t))] dt + dw~(t) (1) 

for each s s I' 

where we write s '  ~ s to mean that the lattice sites s, s '  are adjacent. 
Model Zz~: x(t) is a real-valued field. The phase space X is R r and the 

formal field equations are given by 

dxs(t) = [F(xs(t)) + ~ ,  g(x,,(t) - x~(t))] dt + dws(t) (2) 
k S~N8 J 

for each s e F  

In Eqs. (1) and (2), F and g are functions from R to R, representing, 
respectively, a secular force at each lattice site and a bounded interaction 
between neighboring sites. The {w~(t): s ~ F} are mutually independent, one- 
dimensional Wiener processes. 2;~ may represent an infinite-dimensional 
classical lattice system which undergoes perturbations due to its thermal 
environment, while Eq. (2) for Z~ resembles a lattice version of the equations 
of the Ginzburg-Landau theory of superconductivity in their stochastic form, 
or their analog (a~ describing a laser with a continuum of modes. Model Z~ 
may thus represent a stochastic system with infinitely many degrees of freedom 
which is in a state far from thermal equilibrium. 

3. EXISTENCE A N D  U N I Q U E N E S S  OF THE EVOLUTIONS 

The systems of equations (1) and (2) will be shown to possess unique 
solutions. The method of proof is similar to that employed in Ref. 4 to obtain 
the time evolution of an infinite-particle system. 

We assume that F and g have the following properties: 

(a) F, g are twice continuously differentiable, with derivatives which 
will be denoted by F',  F", g', g". 

(b) F, F ' ,  g, and g' satisfy Lipschitz conditions with corresponding 
constants So, ~1, 70, and 71, respectively. 

(c) There exist ~2, 72 < ~ such that, for all y ~ R, 

]F'(Y)[ + [F"(Y)I <~ e~2; ]g(Y)[ + ]g'(Y)l + [g"(Y)l ~< 72 

For each A ~ P, with complement A c, define XA = (R2) A for Y~, and 
XA = R A for Zz~. Then X is isomorphic with the product XA • XA c, and we 



514 M . M .  Tropper 

shall write correspondingly x = (xA, xA c) for x ~ X. The X and XA will be 
given the product Borel sigma-fields N and ~)a, respectively. 

We consider first the evolution of Z~, and take X = (R2) v. For each 
n >1 0 let A, be the closed cube of side 2n in F, centered at the origin, and 
define the field x("~(t, x ~ for x ~ = (qO, pO) in X and t >/ 0 as follows 

(n'J~ 
x a g ( t , x  ~ = x~ for all t >/ 0 

and for s e AN, x~"~(t, x ~ = (q~ ( t ,  ~"~ P~-(")~t~, x~ is the unique solution of 
the equations 

f~  . (~(u) du q~"'(t) = qfl + w , . 

p~"~(t) = pf l  + F(qp~(u)) - �89 

+ ~ ,  g(q~,~(u) - q~"~(u))] du + w,( t)  - w~(O) (3) 
S" ~ S ,s r~An  J 

[Here and henceforth we omit for brevity the x ~ dependence of q~(t) ,  p~( t ) . ]  
This evolution corresponds to keeping the field at sites outside A, fixed at 
its initial value x~ and letting that inside A~ evolve as a closed system. 

Define also a field ~?("~(t, x ~ by 

~(n)/§ 
x^gt. ,  x ~ = x~ for all t >/ 0 

and for s e A.,  2~"~(t, x ~ = (~"~(t, x~ fi]"~(t, x~ is the unique solution of the 
equations 

f2 ~t~.~(t) = q O + [v]"~(u) du 

fi~"~(t) = p O + F(q~")(u)) - �89 (4) 

~ ,  g(~,~(u) - q~"~(u))] du + w~(t) - + Ws(0) 
St~$ d 

Here the field outside A. is kept fixed as before, but that inside A. now 
evolves under the boundary conditions given by x~ 

The field x ( t )  is obtained as a limit as n --+ oo of the partial evolutions 
x~"~(t). 

P r o p o s i t i o n  3 .17  For each s t  P, x~"~(t, x ~ converges as n---~ 0% 
uniformly over x ~ e X and t in any finite interval [0, ~-], to a limit which we 

a An existence theorem for the evolution of another  infinite-dimensional stochastic model 
with interactions has been established by Lang, (~) using a similar method. 
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call xs(t, x~ The set o f  {xs(t, x ~ = (qs(t, x~ ps(t, x~ s G 1 ~} obey the 
infinite system of  equat ions (1) for  X:, and are the unique solution of  ( l )  
with initial condi t ion x~(0, x ~ = xfl  for  each s E I ' .  

Proof. For  A ~ F and x = (q ,p )  ~ X, define Hq[l• = sups~A]qsl, I[pI1A = 
sup~A[ps[, and IIx]lA = max([[qHA, Hp]IA). I t  fo l lows f rom proper ty  (b) and 
Eqs. (3) that,  i f  r < n, 

l[x(">(t) - x ( ~ + : ' ( t ) l ] ~ r  .< A Hx<=>(u) - x(~+:>~u ' ilIA,+: du (5) 

where A = ~o + 4d~o + �89 + 1. Using the boundedness  of  g, we have also 

f2 llx("~(t) - x ~ " + : ' ( t ) l l A . . <  O IIx<"=(u) - x("+:'(u)llA, du + 4dz~2t 

where B = % + �89 + 1, so tha t  (see Ref. 6, p. 41) 

llx<~'(t) - x < ~ + : ' ( t ) I ~ . . <  4+~B- : (~  ~ -  1) 

I t  follows by i terat ion f rom Eq. (5) tha t  

[Ix("~(t) - x("+:~(t)l]A, ~< 4dy2B- : (e  B~ - 1)(At)"-~/[(n - r)!]  (6) 

and  hence tha t  

]]x("~(t) - x(~+:~( t ) f lA,  .< 4d~2B-:(e  ~ t -  1)e At < oo 

Thus  for  each s ~ A~, {q~"~(t)) and (p]~(t)} converge as n -+  oo to limits qs(t) 
and ps(t), respectively, the convergence being un i form over  x~  X and 
t ~ [0, ~-] for  any ~- < oo. Since q~"~ and p~"~ are cont inuous  functions of  t with 
probabi l i ty  1, the same is true for  qs and  Ps. Lett ing n --~ ~ in Eqs. (3) we 
see tha t  

J2 q~(t) = q O + ps(u) du 

p s ( O  = ps  ~ + f ( q ~ ( u ) )  - �89 

+ s~.,~, g(qs,(u) - qs(u)) lj du + ws(t) - w,(O) for  each s e F 

To  prove  uniqueness,  suppose tha t  ~:(t)~ X also satisfies Eqs. (1), with 
r = x ~ As above  we find tha t  for  any  r 

lie(t) - xO)l[~r ~ 4d~2B-:(e ~ t -  1)(At)~/(m!) for  all m /> O 

and hence r = x(t) .  Q E D  
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We shall later require the following estimate: for r < n, by Eq. (6), 

Ilx<"~(t, x ~ - x(t,  x~ 

< ~ Ux<'~(t, x ~ - x('+l>(t, x~ 
i = / 1  

r ~ - r  

4d~zB-~(e Be - 1) S '  !At-- ) _  
~ .  (i - r ) !  (7) 

Note that, as a consequence of the following lemma, x( t )  could also 
have been obtained as the limit as n -+ m of 2("~(t). 

--(")[t L e m m a  3.1. For  each s e F, lim,~ o~ xs ~, x ~ - 2(~"~(t, x~ = 0, uni- 
formly for x ~ ~ X and t ~ [0, r]. 

ProoL This follows from the inequality 

(At)--' 
[[x~"~(t, x ~ - 2("~(t, x~ ~< 4cl~2B-l(e "~ - 1) ~Z-~)I .  for any n > r 

which is derived as above. QED 

The partial evolutions xr x~ ~("~(t, x ~ for E~ are defined analogously, 
and the existence of a unique solution of the field equations (2) is proved in 
the same way for this model. 

4. THE ASSOCIATED M A R K O V  S E M I G R O U P S  

Let B(X,  ~ )  and B(X^ ,  ~A) be the Banach spaces of  bounded, Borel 
measurable functions on X and XA, respectively, with the supremum norm 
[l [[ | We can consider B(XA, ~A) as a subspace of B(X,  ~ ) ,  consisting of 
those elements that are cylinder functions based on XA. For  each n >t 0, 
positivity-preserving contraction semigroups {Tt("~), {T~"~) and {Tt} can be 
defined on B(X,  ~ )  by 

r}"~f(x ~ = gf(xC"~(t, x~ 

Tt"~f(x ~ = # f (2( ' ( t ,  x~ 

T&(x ~ = #f(x(t ,  x~ 

where g denotes expectation. It  follows from Proposition 3.1, Lemma 3.1, 
and the corresponding results for E~ that if g e B(X^ ,  &a) for some finite 
region A and g satisfies a Lipschitz condition, then, uniformly on bounded 
time intervals, 

tim ~T~g -- zP'gll= = o -- lim IIT, g - TP'gII= (8) 
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For x G X, A e M, and t I> 0, define P(t, x, A) = (T~IA)(x). Then (see Ref. 7) 
for a n y f e  B(X, ~), 

T,f(x) = fx P(t, x, dy)f(y) 

For each of our models we now describe those probability measures m 
on Xtha t  satisfy the so-called DLR conditions, and show that such a measure 
corresponds in each case to a stationary distribution for x(t). We make the 
following assumption: 

(d) There exist (I):, ~2: R -+ R, (I)2(y) = (I)2(-y), such that 

F(y) = - ~: ' (y)  and g(Y) = ~2'(Y) for all y ~ R 

Model E:: For each finite region A c I ~, define 

VA(qA) = ~ (I):(q~) + �89 ~, (I)2(qs, -- q,) 
SEA 8 8 ~ A  $ 8 

l?^(qAlqA0 = Va(qA) + ~ *2(q, -- q~) 
8 ~ J k ~ r  ~ 8 

= V^(qa)+ Wa(qalqA~ say 

/Ta(xA[xa0 = 17A(qA]qa~ + llp~[~ 

For each finite A and each xAo G XAo, suppose that: 

(e) exp[-/317A( [qA0] e L:(RA). 

(f) (8~'^/8q,)([q^o) exp[-~lTa( [qao)] eL : (R  A) for each s ~ A. 

For 17 c F, let mzz be the projection of the probability measure m onto 
(Xa, ~r~)- We say that m satisfies the Dobrushin-Lanford-Ruelle (DLR) 
conditions at inverse temperature 13 if, for anyfG L:(X, m) and finite region A, 

fxf(x) dm(x) = Jx~o dmA~176 fx f(xA, xAON^(xA~ 

x exp[--/3/TA(XA[XAo)] dxA 
where 

/ .  

[NA(xAo)]-: = JxA exp[--/~/TA(XAIXAc)] dxA 

Model Y::: For x e X = R v, define VA(XalXAo) as above, and suppose 
that for each finite A and each xAc e X^c: 

(e') exp[ -  217a( [xA0] s L:(RA). 

(f') [017a( [xao)/OxJ exp[-217A( Ixac)] eL : (R  A) for each s E A. 
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The probability measure m satisfies the 
f~  LI(X, m) and finite region A, 

where 

DLR conditions if, for any 

fxf(X) dm(x) = ~xAc dmA~ fxAf(XA, XAc)mA(xA*) 

x exp[ -  217A(XA]XA0)] dxa 

[NA(x^o)] -1 = f exp[--2ITA(xA]xAo)] dXA 
oX A 

Note .  Using the compactness of the unit ball in the space of Radon 
measures on a locally compact Hausdorff space, the existence of DLR 
measures for Y,~ and Zn can be proved, at least in the case when q~2 is bounded. 
Such measures are not in general unique. 

L e m m a  4.1. Under assumptions (a)-(f), any DLR measure m defines a 
stationary distribution for Z~. 

ProoL Let ~o ~ C~om(XA), A c A,. Using (c), (e), and (f), we can show, 
just as in the proof of Proposition 3.1, Ref. 1, that for any fixed xA~ and 
t~>0,  

(d/dt) f T(t"'~(x) exp[--/3/-?A,(xA,[XAg)] dxA, = 0 ~X An 
Hence (d/dt) J'x 2P}"~9(x) dm(x) = 0, so that for any t/> 0, J'x iPt(m~(x) dm(x) = 
~x cp(x) dm(x), and so by Eq. (8) also ~x Ttq~(x) dm(x) = ,Ix ~o(x) dm(x). Thus 

Cgom(XA) c c~o= f~o~B(XA,~A) : fx Ttcp(x) dm(x) 

=fxq~(x) dm(x) f o r a l l t  >~ 0 )  

Since s162 is closed under addition, scalar multiplication, and bounded point- 
wise limits, it follows from p. 160 of Ref. 7 that 1B ~ .W for all E ~ ~A. Hence, 
by definition of the product topology in X, 

fxP(t, A) dm(x) =m(A) for all A E ~ ,  t /> 0 QED X, 

A similar argument shows that, if (a)-(d), (e'), and (f') are satisfied, and 
m is a DLR measure for Zn, then m defines a stationary distribution for Z n. 
Thus for both models, any DLR measure m is invariant for the Markov 
process x(t) with transition probability P(t, x, A), and so the equation 

Ttf(x) -- f P(t, x, dy)f(y) Jx 
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defines {Tt} as a semigroup of linear, positivity-preserving contractions on the 
Hilbert space # f  = L2(X, m) (see Chapter XIII, Par. 1, Theorem 1 of Ref. 8). 
Let ]1 II and ( ) denote, respectively, the norm and inner product in ~ .  

k e m m a  4.2. {Tt} is strongly continuous on ~ .  

Proof. Let f e  C(2~(XA), where A is a finite region. Let x e X, z > 0. 
By Eqs. (8), given e > 0 there exists n such that A ~ A, and I T 2 ( x )  - r?f(x)l 
< �89 for all t e [0, ~-]. Since x~"2(t) is a diffusion process and thus stochastically 
continuous, it follows that limt,o T } ' f ( x )  = f ( x ) .  Hence there exists ~o < ~" 
such that [T(t"f(x) - f(x)[ < �89 for all t ~< to, and so ]Ttf(x) - f (x)]  < 
for all t ~ Zo. By the dominated convergence theorem, 

l imI{Ttf  - fll 2 = lim ( ] T t f ( x )  - f (x)[  2 dm(x) = 0 
t$O t$O ax 

The domain of strong continuity of {Tt} thus includes UAfl~t~ C(2~(XA), and 
so by density is all of o~. 

5. M IX ING 

Proposition 5.1. Let F and g satisfy (a)-(f). Then Zz is mixing with 
respect to any DLR measure, according to the definition given in Section 1. 

Proposition 5.2. Let F and g, satisfy (a)-(d), (e'), and (f'). Then Zn is 
mixing with respect to any DLR measure. 

In this section we shall prove Proposition 5.1. The proof of Proposition 
5.2 is similar and will be omitted. 

The following lemmas will be needed. The proof of Lemma 5.1 uses 
results from the theory of finite-dimensional stochastic differential equations 
and estimates similar to those of Proposition 3.1 (see Chapter 6, Ref. 2). 
Lemmas 5.2 and 5.3 are proved in the appendix. 

Lemma 5.1. Let f E  C~2>(XA) and t /> 0. Then for i~ A~, A~ D A, 
(a/apO~(~f and (O/apOTtf exist and lie in B(X ,  ~ ) ,  and 

lira #Ttf ~ T ~ I I  = 0  
A ~  ap, ap, //o~ 

uniformly for t in any finite interval. 

Lemma 5.2. For any finite region A, define the differential operators 
GA 1 and GA 2 by 

- [aITA(qAIqA~) a a ] 

L .1 
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2 Let 9 ~ Ccom(XA,),f~ CC2)()A), where A, A' are finite. Then for all t /> 0, 

(d/dt)(% Ttf) = ((G~, + ~ ' )9 ,  Ttf)  (9) 

I . emma 5.3. ~r is a separable Hilbert space. 

P r o o f  o f  P r o p o s i t i o n  5.1. Let m be a DLR measure on X = (R2) v, 
and, as in Section 4, define W = L2(X, m). L e t f ~  C~2>(XA), A ~ A,. Then 
T}"f~ ~ ,  and 

II~r~.,fll ~ = ~ 'r(t, x~ 0 dmA~(xAg) (10) 
a x  a~ 

where 

�9 (t, xA~) = NA.(xAO ~ I~<">f(x)[  2 exp[--/3/gA.(XA.IXA.~)] dxA. (11)  
~ X  All 

Using (c), (e), and (f) to differentiate under the integral and integrate by 
parts in (11), we obtain 

~F(t, XA~,) = NAll(XA~.) ~ -- O T(t.f(x) exp[_/3/~All(XA.lXA~)] dXA. 
at t~A. 

By Lemma 5.1, given r < 0% there exists M < oo such that ]8T~"f(x)/Opi] <<. 
M for all x ~ X, t e [0, r]. Thus differentiation under the integral sign in (10) 
is permissible, with the result that 

Hence for any i ~ A., t /> 0, 

i i~, ,- ,f l l  ~ - 11f~2 .< - I i 0~ , - , f /Op ,  iI ~ du 

By Eq. (8) and Lemma 5.1, letting n -+ ~ ,  

I2 lIT211 ~ - [ I f [ I  ~ .< - [[OT,,f/ap, ll ~ du 

Since UTtf[[ is nonincreasing and bounded below, it follows that 

and hence that there exists a sequence (4) t oo such that 

lim IlaYj/ap, II = o (12 )  
o-...., oo 

As in Ref. 9, call such a sequence a (,)-sequence. Since {Ttf}t~ o is bounded in 
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d~, it has a weakly convergent subsequence; let (u~) t oe be such that weak- 
l i m ~  o~ T u J  = y ~ ~ Passing to a subsequence if necessary, we may assume 
(cf. Refs. 2 and 9) that l i m , ~ ( u o  - 6) = 0 for some (.)-sequence (6). It 
follows from the strong continuity of {Tt} on #g that also 

weak-lim Tt~f = Y 

Let D~ be the differential operator O/~p~ defined on the domain 

U T~C'~'(X*) 
A f l n i t e , t  ~ 0 

which is dense in ~ .  Define W~ on I,.flArinlte Cgom(X.) by W,9(x) = flAg(x) - 
~9(x)/Op,. Since D, and W, are adjoint, the adjoint operator D~* exists and 
extends W,. I f  9 ~ C2oom(XA'), A' finite, then by Eq. (12) 

(y, W~ 9) = l im(T tJ ,  W~ 9) = l im(D,TtJ ,  9) = 0 (13) 
if--, oo ~ o o  

Let A' --- II [..) {i}, where !7I is finite and does not contain i, and let I', denote 
P/{i}. From Eq. (13) with 9(xa.) = 9~(x~)~odq,)ga(A), where 9z e Cgo~,(Xr3 

2 
and 92, 93 E C~o~(R), 

~xr, dmr,(xr,) gdx~)N"}(xr,) f~ (~'(x)gdq3 
x exp[-13V~,(qi[qr,)] 

X ddp,{[ exp (-~ll3p,2~]ga(p~)l~dqidp,/j)/ = 0 

Let 
[ ,  

`7(p~) = | ama(xr~) 91(xii)N,}(xr,) 
o X  I" l 

x fR {Y(x)gdq0 exp[-/3 ~'{~(q~]qv,)]} dqi 

'7 is defined for any 91, 92 of  the above form outside a Lebesgue-null set of 
p~, and j'~ o~ ̀ 7(pi)(d~b/dp~) dp~ = 0 for any ~b e Cgom(R). Hence (see Ref. 1, 
Lemma 3.2), '7 is a constant. Using the arbitrariness of II, 91, and 92, the 
fact that m is absolutely continuous with respect to mrs x (Lebesgue measure 
on R2), and the fact that y(xr,, q~, ) is locally integrable on R for all (Xr,, q~) 
outside an m a x (Lebesgue)-null set, we can prove by an argument similar 
to that of Lemma 3.1, Ref. 1 that 7 is independent of A m-almost everywhere. 
By the arbitrariness of i, we conclude that y = 7(q) is independent o fp .  

We have thus proved that weak-lime_. ~ T ~ f  = y, a p-independent func- 
tion. Let t > 0. Arguing as in the proof  of Proposition 3.1, Ref. 1, we find 
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o = f xq~z(qn)~2(PrO~'(q)[~qa - fl - -  

and hence 

that Tt~ = weak-lim~. ~ T~+.Jis  also p-independent. Let {Tt} have infinitesi- 
mal generator Q. The dual semigroup {Tt*} is weakly continuous, and hence, 
by Lemma 5.3, also strongly continuous, with infinitesimal generator Z satis- 
fying ZTt*g = Q*Tt*g for any g ~ Dom (Z), t /> 0. For any finite region A' 
and ~o ~ C~om(XA'), t > O, 

(d/dt) (% TtT)= (Q*Tt*% 7> 
= lim<% QTt+.J) = lim{(d/dt) (% T t + . J ) }  

= lim ((G~, + G~,)% Tt+~J) by Lemma 5.2 

= <(G~, + G~.,)qg, TW) = (GX,ep, Try>, 
since TO, is p-independent. Let A' = A, (.J 1I, where II is disjoint from A,~, 
and let (p have the form ~o(xA,)= ~(qrOCpz(pn)q~3(qA,)~4(pA,), where ~o~, 

2 A n q~2 E Cgom(Rn), ~a, q), e Coom(R ), and 

f~ [exp(-�89 dpA. = 0 (14) 
Art 

Then (% TW> = 0 for all t >/ 0, and it follows that 

o = <8~,% r> 

= t~. fx ~z(q~)~~ 

[ OF'A. ~cPa] dm(x) • ~ ~ ~a(qA.) - eq, J 

using (14) and integrating by parts in the variables p~, i z A~. Hence by the 
arbitrariness in the choice of q~, for each i ~ A.,  

OVA. 9a) am(x) (15) O = f x q~l ( qn)q~2(Pn)V( q ) ( ~ - fi -~q ~ 

Let r < n. From Eq. (15), for each k ~ A~, 

8VA,(qA,)Sq~ q~a] din(x) 

where 

0 =  fRA- 99(qA")~ {%(qA.)exp[--fiVA.(qA.)]} dqA. 

~(qA.) = fX NA.(XA~)q~l(qn) 
a~ 

• q~z(Pa)~'(q) exp[--fl~A.(qA.IqAg)] dmAg(XA~.) (16) 
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is defined for any ~01, ~02 of  the above form outside a Lebesgue-null set of 
qA,, and locally integrable on RA-. Thus by (a), for any ~b e Cgom(RA,) and 
each k E At, 

fR O~b(qa") dqA, 0 = A. 9(qa") 

so that, from Lemma 3.2, Ref. 1, 9 is qa -independent Lebesgue-almost every- 
where. Let A, r =  A,/Ar. Since y ~ c LI(X, m), y(qa~,qA~) is locally 
integrable on R A, for all (qax, qAi) outside an max x (Lebesgue)-null set N1. 
Also, because of  the arbitrariness of l-I, ~ ,  ~02 in (16), there is an max x 
(Lebesgue)-null set N2 such that for all (qax, qA~) ~ N2 c, 

f y(q) dqa, = s y(q) dqa, 

for any half-open intervals I and J in R A, having rational end points and 
finite equal Lebesgue measures. Since m is absolutely continuous with respect 
to max x [Lebesgue measure on (R2)A~], we can deduce as in the proof  of 
Lemma 3.1, Ref. 1 that y(q) is independent ofqA, m-almost everywhere. 

As r was arbitrary, y must be a constant, and it follows from the invari- 
ance of m that 

= <f, 1 > = fx f(x) dm(x) y 

Finally, suppose that weak-limt~ o~ T J  r ( f ,  1). By weak sequential compact- 
ness there must exist a sequence (u, ' )}  oo such that weak-limo_,| T,,;f = 

r ( f ,  1). We have, however, shown this to be impossible. Hence 

lim fx Ttf(x)h(x)dm(x)= fx f(x)din(x) fx h(x)din(x) (17) 

for any h e ~ a n d f ~  C(=~(XA), A finite. 
Density arguments now show that Eq. (17) holds for a n y f e  B(X, ~) ,  

h e L~(X, m), and the conclusion of Proposition 5.1 follows. 

6. THE I N V A R I A N T  M E A S U R E S  FOR Zi 

We have seen in Section 4 that the measures on X that satisfy the DLR 
conditions define stationary distributions for both Z~ and En. In this section 
we shall prove that, for model X~, any stationary distribution that is time- 
reversal invariant and satisfies certain additional requirements must be given 
by a DLR measure. 

Define a time-reversal operator p on B(X, ~) by 

of(q, P) = f(q, -P) 
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P r o p o s i t i o n  6.1. Let the probability measure m on Xbe  stationary for 
E: and satisfy: 

(i) .Ix pf(x) dm(x) = .[x f(X) dm(x) for a l l fG B(X, ~). 

(ii) J'x (]Psl + tqs]) dm(x) < oo for each s e F. 

(iii) For  each finite region A, and xAc e XAo, the conditional probability 
measure m(IxAc) exists on XA and is absolutely continuous with respect to 
Lebesgue measure on XA, with corresponding Radon-Nikodym derivative 
  (XAIXA~ 

(iv) rhA(XA[XAc) > 0 for all x ~ X, and for any finite A and II with 
A ~  II, 4 

rhn(XnlXno) = gnA(xAixAo) f rhn(f^, xm^lXno ) dSA (18) 
v X  A 

Then m satisfies the DLR conditions. 

N o t e  on  C o n d i t i o n  (18).  Let gin( [~A ~ denote the conditional ex- 
pectation given the sigma-algebra NAo : ~ ,  for the measure m. Then for each 
A ~ , x ~ X ,  

gm(lalNa~ = fx I~(#A, x,,~ d~t, 

= QA(x,A) say 

QA is thus a version of  the conditional probability of  m with respect to ~A, 
for each finite A (cf. Ref. 10), and the following consistency condition must 
therefore hold: For any finite A, II with A ~ II, 

(QnQA)(x, A) = Qn(x, A) for all A ~ 

and m-almost all x e X (19) 

where 
[.  

(QnQ^)(x, A) = Jx QA(Y, A)Qn(x, dy) 

If  Eq. (19) is required to hold everywhere, rather than just m-almost every- 
where, (18) follows. 

Proo f  o f  P ropos i t i on  6.1. Let f e  C(2)(XA,), A' c A,_ : .  For any 
t > 0 ,  

0 = fx [T~f(x) - f (x)]  dm(x) 

= fx [Ttf(x) - T["f(x)] din(x) + fx [T[nf(x) - f (x)]  dm(x) (20) 

4 It is of interest to note the equivalence between DLR and KMS conditions, which 
has been established for an infinite conservative system in Ref. 10. 
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By Eq. (7) and the Lipschitz property o f f ,  l lT t f -  Tt("fl]~ is o(t) as t,~ 0. 
Hence from Eq. (20), using (ii) to differentiate under the integral sign, 

0 = lim t - : [  [ T i f f ( x ) - f ( x ) ] d m ( x ) =  ( d / d t ) (  T[nf(x) dm(x)[t=o 
~ . 0  Jx Jx 

= ~x (G~, -- G~x,)f(x) am(x) (21) 

For any h e C(2>(XA,), p(G[,h) = G[,(ph) and ?(G~,h) = -G~,(ph). Thus by 
(i) and Eq. (21), for e a c h f ~  C(2~(XA,), 

xG[ , f (x )  dm(x) = 0 (22) 

xG~,f(x)  dm(x) = 0 (23) 

Let A be a finite region, and define 

tLA(XA) = fxA~ r~A(Xa[XAo) dmAc(xA c) 

Then dma(xA) = t~A(XA) dxa, and 

Fa(pa) =- ( f:(qA)t~A(qA,pA)dqA 
RA 

is defined for any f :  e C(2>(R a) outside a Lebesgue-null set of PA. From 
Eq. (22), with A' = A, 

fRA gA(Pa)Ga:f2(PA) dpA = 0 for f2 e C(~')(R a) any 

and hence #A is a stationary density for the Gaussian diffusion process on 
R A whose Langevin equation is 

dpA(t) = --X~pA(t) dt + dwA(t) 

[where wA(t) is an RA-valued Wiener process]. Since (~:) this process has the 
unique stationary density const x exp(-�89 it follows that 

t~A(pA) exp(�89 

is constant almost everywhere, and hence from Lemma 3.1 of Ref. 1, that 
t~A(qA, PA) = vA(qA)exp(--�89 ~) almost everywhere (Lebesgue), for some 
measurable function vA on R ̂ . 

Thus, since A was an arbitrary finite region, the measure m on (R2) v = 
R v x R v is the product of a configurational part m (q~ and a momentum part 
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m (p), and m (p) is the product on I~,~r R of the Gaussian probability measures 
with densities (2~/fi) -1/2 exp(- l f ip  2) on each copy of R. It follows that 

r~A(XAIXAo) = gA(qAlqAc) exp(--�89 2) (24) 

for some measurable p-independent function ~A- 
Let 0 E C~om(Xn), 0Ol, 0o2 ~ C~om(RA), where A, II are finite disjoint 

regions. From Eq. (23) with A' = A O II and f of the form f(xa.) = 
O(Xr~)0ol(qA)0o2(pA) we find, using the arbitrariness of 0o2, that for each i ~ A, 

fxac dmA~ O(Xrl) 

x fsA ~A(qalqA~ alTa(qalqA~ 0ol(qA)- 80ol]Oq~ J dqA = 0  (25) 

Let A ~ = {iE A: if s o  F, s ~ i, then s e  A}; aA = A\A ~ From Eq. (25), if 
i e A ~ 

fxA~ dmA~ O(xn) f~a ({exp[flVA(qA)]}~A(qAlqA~ 

x ~ {0oz(qA) exp[--fiVa(qa)]} dqA = 0 (26) 

Thus, using (a), J'RA ~A(qa)[Or dqA = 0 for any i e A ~ ~ e Cgom(Ra), 

where 

~A(qA) = {exp[fiV(qA)]} ( O(XI~)gA(qA[qA~) dmAo(XAO 
J X  

Ar 

is locally integrable on RA. 
Hence by Lemma 3.2, Ref. 1, ~A(qa) is q~o-independent almost every- 

where. Using the arbitrariness of II and 0, we can now show, by an argument 
similar to that used in the proof of Proposition 5.1 to prove the qa, inde- 
pendence of 7(q), that {exp[fiVa(qA)]}~a(q~]qAo) is q~o-independent m-almost 
everywhere. It follows that 

~^(qA]qao) = {exp[-13V~(qa)]}~F~(qealqao) (27) 

for some tF~ that is independent of qAo. 
Finally, substituting Eqs. (24) and (27) into Eq. (18) for regions A, l-I, 

with A ~ 11 ~ and using the identity 

Vx~(qn) = V~(qA) + Vma(qm~) + ff'A(qa]qA0 
we find that 

mA(XAlXA~ = 
exp[-flI4a(xAIxa~)] 

and hence that m satisfies the DLR conditions. 

J'x~ exp [ -  ~HA(xAIxaO] dxa 

QED 
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7. C O N C L U D I N G  R E M A R K S  

We have shown not only that measures satisfying the DLR conditions 
are stationary for both our models, but also that under certain circumstances 
such measures are the only stationary states for Y,:. The DLR conditions 
describe states that possess internal local stability. <:2~ They are generally 
assumed to describe equilibrium states of infinite-dimensional classical 
systems, both stochastic and mechanical. We see that they may also be steady 
states of systems, such as lasers, which undergo pumping and are thus not 
in thermal equilibrium. 

In an extension of our previous work on finite-dimensional systems, we 
have also proved that models Z: and ~:: are mixing with respect to any DLR 
measure. 

Results similar to ours on stationarity and mixing properties of DLR 
states are obtained in Ref. 13 for a classical lattice spin system whose evolu- 
tion is given by a Markov process with detailed balance, and in Refs. 4, 14, 
and 15 for an infinite system of classical particles with a conservative evolu- 
tion. Although time-reversal invariance is not imposed there, the conditions 
under which in Ref. 14 a stationary state is shown to be DLR are otherwise 
more restrictive than those we require in Proposition 6.1. 

APPENDIX  

Proof of Lemma 5.2. Let n > 0 be such that A I,J A'  c A~. Now, 

~x A~ 

where 

O(t, xA~) = NA.(XA~) ~x~.. T~'>f(x)~(x) exp[--/~/TA.(XA.]XA~)] dXA. 

Using (c), (e), and (f) to differentiate under the integral and integrate by parts, 

0_~ O~(t, xA~) = N~,(xa~) fx Tt("~f(x)[(G~' + C~,)q~](x) ~t ,t~ 

x exp[--/?~,,(XA,]XA~)] dxA, 
Now (G~, + G~,)q~ is bounded on X, and li~['~'(x)i ~< ilf]]~ for all x ~ X, 
t >/ 0. Hence we may differentiate under the integral in (A1), obtaining 

(d/dt)~% T(t">f~ = f~ dm(x) Tt<'>f(x)[(G.{_, + C.~,)9)](x) 

Equation (9) follows on letting n ---> oo. QED 
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P r o o f  o f  Lemma 5.3.  For each n >>. O, L2(XA,, rnA, ) = ~ is a separ- 
able subspace of  ~ ,  consisting of cylinder functions based on A, .  Let S,  
be a countable dense set for ~ ,  and define S = U,% 0 S~. We shall show 
that the countable set of all finite sums of rational multiples of elements in S 
is dense in J/d. 

L e t f ~  ~ ,  E > 0. There exists a simple function f =  ~ = 1  r=lB~, where 
the r~ are rationals and B~ ~ ~ ,  i = I ..... N, such that [ I f -  fI[ < ~ .  Now 
by definition ~ is the sigma-field generated by the semiring r of cylinder sets 
of X. Hence for each i ~< N there is a set R~, consisting of a finite union of 
disjoint sets of eft, such that m(B~ A R~) <<. (e/3Nr~) 2, where A denotes the 
symmetric difference. It follows that 1118,- lx, lf < e/(3Nlr~l). Also, since 
Ix, e ~ for some n(i) < oo, there exists ~o~ e S~(t~ c S such that [[ Ix, - ~o~11 
,/(3Nlr,[). Thus 

N N 

l ,[I 
t==l = 

N 

+ Ir, I IIl ,- I1 
i--1 

~< 3(~/3) = E QED 
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